Performance enhancement of large-scale linear dynamic MIMO systems using GWO-PID controller

Mohammed Qasim Sulttan, Salam Waley Shneen, Jafaar Mohammed Daif Alkhasraji

Abstract


The multi-input multi-output (MIMO) technique is becoming grown and integrated into wireless wideband communication. MIMO techniques suffer from a large-scale linear dynamic problem, it will be easy to adjust the proportional-integral-derivative (PID) of a continuous system, unlike the nonlinear model. This work displays the tuning of the PID controller for MIMO systems utilizing a statistical grey wolf optimization (GWO) and evaluated by objective function as integral time absolute error (ITAE). The instantaneous adjusting characteristic GWO approach is the criterion that distinguishes such a combination-proposed strategy from that existing in the traditional PID approach. The GWO algorithm searching-based methodology is used to determine the adequate gain factors of the PID controller. The suggested approach guarantees stability as the initial scheme for a steady state condition. A combination of ITAE combined with the GWO reduction method is adopted to reduce the steady-state transient time responses between the higher-order initial scheme and the unit amplitude response. Simulation outcomes are illustrated using MATLAB software to show the capability of adopting the GWO scheme for PID controlling.


Keywords


Gray wolf optimization; Integral time absolute error; Multi-input multi-output; Proportional-integral-derivative

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v12i5.4870

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).