A deep learning based architecture for malaria parasite detection
Yousef Alraba'nah, Wael Toghuj
Abstract
During last decade, medical imaging has attracted great deal of research interests. Deep learning applications has revolutionized medical image analysis and diseases diagnosis. Convolutional neural networks (CNNs)-a class of deep learning-have been widely used for classification and feature extraction, and they revealed good performance for various imaging applications. However, despite the advances in medicine, malaria remains among the world’s deadliest diseases. Only in 2020, malaria recorded 241 million clinical episodes, and 627,000 deaths. The disease is examined visually through a microscope, which depends on the pathologists experience and skills and results may vary in different laboratories. This paper proposes an efficient CNN architecture that could be used in diagnosing of malaria disease. By processing on 27,558 red blood smear cell images with balanced samples of parasitized and unparasitized cells on a publicly available malaria dataset from the National Institute of Health, the proposed model achieves high accuracy rate with 99.8%, 98.2, and 97.7% for training, validation and testing sets. Furthermore, the statistical results approve that the proposed model is outperforming the state-of-the-art models.
Keywords
Blood smear; Convolutional neural network; Deep learning; Image processing; Malaria detection
DOI:
https://doi.org/10.11591/eei.v13i1.5485
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .