Ensemble learning classifiers hybrid feature selection for enhancing performance of intrusion detection system

Hasanain Ali Al Essa, Wesam S. Bhaya

Abstract


Feature selection (FS) plays an important role in the construction of efficient ensemble classifiers; particularly for intrusion detection system (IDS). An IDS is a utilized in a network architecture to protect the availability of sensitive information. However, existing IDSs suffer from redundancy, high dimensionality, and high false alarm rate (FAR). Also, lots of models are constructed for outdated datasets, which makes them less flexible to deal with new assaults. Therefore, this paper proposes a new IDS relies on hybrid FS and ensemble classifiers. A hybrid FS approach consists of two techniques, hard-voting and mean. In contrast to recent papers, we use three different FS approaches: extra tree classifier importance as an embedded FS, recursive feature elimination (RFE) as a wrapper FS, and mutual information (MI) as a filter FS. Then, a hard-voting technique has been used to fuse output of these approaches and obtain a reduced subset of features. Since each feature has three weights, a mean technique has been utilized to assign one weight to each feature and obtain an optimal subset of features. The experimental outcomes, utilizing the modern InSDN dataset, confirm that the proposed hybrid FS with ensemble soft voting classifier achieves better results than other ensemble and individual classifiers due to several measures.

Keywords


Ensemble learning classifier; Feature selection; Intrusion detection system; Multilayer perceptron; XGBoost algorithm

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i1.5844

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).