Microscopy images segmentation algorithm based on shearlet neural network
Nemir Ahmed Al-Azzawi
Abstract
Microscopic images are becoming important and need to be studied to know the details and how-to quantitatively evaluate decellularization. Most of the existing research focuses on deep learning-based techniques that lack simplification for decellularization. A new computational method for the segmentation microscopy images based on the shearlet neural network (SNN) has been introduced. The proposal is to link the concept of shearlets transform and neural networks into a single unit. The method contains a feed-forward neural network and uses a single hidden layer. The activation functions are depending on the standard shearlet transform. The proposed SNN is a powerful technology for segmenting an electron microscopic image that is trained without relying on the pre-information of the data. The shearlet neural networks capture the features of full accuracy and contextual information, respectively. The expected value for specific inputs is estimated by learning the functional configuration of a network for the sequence of observed value. Experimental results on the segmentation of two-dimensional microscopy images are promising and confirm the benefits of the proposed approach. Lastly, we investigate on a challenging datasets ISBI 2012 that our method (SNN) achieves superior outcomes when compared to classical and deep learning-based methods.
Keywords
Electron microscopy image; Image segmentation; Machine learning; Neural network; Shearlet transform
DOI:
https://doi.org/10.11591/eei.v10i2.2743
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .