Path planning and obstacle avoidance for UAVs using Theta* and modulated velocity obstacle avoidance with 2D LiDAR
Hoang Thuan Tran, Dong LT. Tran, Chi Thanh Vo
Abstract
This paper proposes a novel framework for autonomous unmanned aerial vehicle (UAV) navigation in complex environments, seamlessly integrating Theta* for global path planning with a simplified modulated velocity obstacle avoidance (MVOA) algorithm for local obstacle avoidance. Theta* generates optimal, smooth paths, while MVOA processes 2D LiDAR data as a single obstacle block to compute modulated velocities, enabling efficient avoidance of static and dynamic obstacles with minimal computational overhead. Compared to MVOA-only navigation, the integration of Theta* and MVOA produced shorter trajectories and faster mission completion with smoother velocity adjustments, demonstrating clear improvements in efficiency and stability. Simulation results show the framework maintains a 0.6 m safety distance and operates at 10 Hz, underscoring its robustness and reliability. The resulting control velocity is transmitted to an ArduPilot-based flight controller via MAVLink, ensuring precise, real-time execution. The current implementation focuses on 2D navigation in a planar environment as a foundation for future 3D expansion, with all results obtained through high-fidelity simulation. Building on these findings, the framework shows strong potential for real-time applications such as swarm UAV coordination, terrain surveying, and indoor navigation, offering a scalable solution for autonomous systems in dynamic settings.
Keywords
Dynamic window approach; LiDAR; Modulated velocity obstacle avoidance; Theta*; Unmanned aerial vehicle
DOI:
https://doi.org/10.11591/eei.v14i6.10594
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .