Distinctive features for normal and crackles respiratory sounds using cepstral coefficients
N. H. Mohd Johari, Noreha Abdul Malik, K. A. Sidek
Abstract
Classification of respiratory sounds between normal and abnormal is very crucial for screening and diagnosis purposes. Lung associated diseases can be detected through this technique. With the advancement of computerized auscultation technology, the adventitious sounds such as crackles can be detected and therefore diagnostic test can be performed earlier. In this paper, Linear Predictive Cepstral Coefficient (LPCC) and Mel-frequency Cepstral Coefficient (MFCC) are used to extract features from normal and crackles respiratory sounds. By using statistical computation such as mean and standard deviation (SD) of cepstral based coefficients it can differentiate between crackles and normal sounds. The statistical computations of the cepstral coefficient of LPCC and MFCC show that the mean LPCC except for the third coefficient and first three statistical coefficient values of MFCC’s SD provide distinctive feature between normal and crackles respiratory sounds. Hence, LPCCs and MFCCs can be used as feature extraction method of respiratory sounds to classify between normal and crackles as screening and diagnostic tool.
Keywords
Crackles; LPCC; MFCC; Respiratory sounds; Statistical computation
DOI:
https://doi.org/10.11591/eei.v8i3.1517
Refbacks
There are currently no refbacks.
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .