Automatic voltage regulator performance enhancement using a fractional order model predictive controller
Imen Deghboudj, Samir Ladaci
Abstract
In this paper, a new design method for fractional order model predictive control (FO-MPC) is introduced. The proposed FO-MPC is synthesized for the class of linear time invariant system and applied for the control of an automatic voltage regulator (AVR). The main contribution is to use a fractional order system as prediction model, whereas the plant model is considered as an integer order one. The fractional order model is implemented using the singularity function approach. A comparative study is given with the classical MPC scheme. Numerical simulation results on the controlled AVR performances show the efficiency and the superiority of the fractional order MPC.
Keywords
AVR system; FOMPC; Model predictive control; Fractional order control; Singularity function method
DOI:
https://doi.org/10.11591/eei.v10i5.2435
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .