DCT based feature extraction and support vector machine classification for musical instruments tone recognition
Linggo Sumarno, Rifai Chai
Abstract
The conducted research proposes a feature extraction and classification combination method that is used in a tone recognition system for musical instruments. It is expected that by implementing this combination, the tone recognition system will require fewer feature extraction coefficients than those previously investigated. The proposed combination comprises of feature extraction using discrete cosine transform (DCT) and classification using support vector machine (SVM). Bellyra, clarinet, and pianica tones were used in the experiment, with each indicating a tone with one, several, or many major local peaks in the transform domain. Based on the results of the tests, the proposed combination is efficient enough to be used in a tone recognition system for musical instruments. This is indicated in recognizing a tone, it only needs at least eight feature extraction coefficients.
Keywords
DCT based feature extraction; Feature extraction; Musical instruments; SVM classification; Tone recognition
DOI:
https://doi.org/10.11591/eei.v10i5.3158
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .