Identifying deoxyribonucleic acids of individuals based on their chromosomes by proposing a special deep learning model

Raid Rafi Omar Al-Nima, Musab Tahseen Salahaldeen Al-Kaltakchi, Hasan A. Abdulla

Abstract


One of the most significant physiological biometrics is the deoxyribonucleic acid (DNA). It can be found in every human cell as in hair, blood, and skin. In this paper, a special DNA deep learning (SDDL) is proposed as a novel machine learning (ML) model to identify persons depending on their DNAs. The proposed model is designed to collect DNA chromosomes of parents for an individual. It is flexible (can be enlarged or reduced) and it can identify one or both parents of a person, based on the provided chromosomes. The SDDL is so fast in training compared to other traditional deep learning models. Two real datasets from Iraq are utilized called: Real Iraqi Dataset for Kurd (RIDK) and Real Iraqi Dataset for Arab (RIDA). The results yield that the suggested SDDL model achieves 100% testing accuracy for each of the employed datasets.

Keywords


Chromosomes; Deep learning; Deoxyribonucleic acid; DNA identification; Machine learning

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.6198

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).