CODE NET: COVID-19 segmentation and detection via deep learning based networks
Fareesa Amina, Krishnanaik Vankdoth
Abstract
Humans with COVID-19 have an infectious condition that affects the respiratory system. In addition to more serious conditions, headaches may be fatal for those who have the disease. Our difficulty with COVID-19 detection stems from the unreliability of computed tomography (CT) and magnetic resonance imaging (MRI) scans in identifying lung abnormalities. COVID-19 detection is a time-consuming process. In this research, a novel CODE NET model is proposed for the detection of COVID-19 virus from the gathered lung chest X-ray (CXR) images. The images are pre-processed utilizing an adaptive trilateral filter to improve the quality of the images. A reverse edge attention network (RE-Net) uses enhanced images to segment the CXR images for accurate virus detection. The segmented images are fed into a Link Net to extract relevant features and classify the COVID-19 cases. The classified cases are fed into the Grad-CAM model to generate heat maps for accurately detecting the virus. According to the result, the proposed model attains 99.75% of accuracy rate for the COVID-19 detection. The proposed CODE NET enhances the overall accuracy by 1.78%, 1.51%, and 2.20% over combined domain features-random forest (CDF-RF), Bayes-SqueezeNet, and bidirectional long short-term memory (Bi-LSTM) respectively.
Keywords
Adaptive trilateral filter; Chest X-ray images; COVID-19 detection; Grad-CAM; Link Net; Reverse edge attention network
DOI:
https://doi.org/10.11591/eei.v14i5.8951
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .