Multi-feature fusion framework for enhanced image deduplication accuracy using adaptive deep learning
Rahul Shah, Ashok Kumar Shrivastava
Abstract
Image deduplication is a critical task in domains such as digital asset management, content-based image retrieval (CBIR), and data storage optimization. This paper presents a novel method for improving deduplication accuracy by integrating multiple feature types. A comprehensive framework is proposed that combines visual, semantic, and structural image elements. The system employs deep learning architectures, including convolutional neural networks (CNNs) and transformers, to extract high-level features, which are fused through an adaptive weighting mechanism that dynamically adjusts based on image content. Experimental results across diverse datasets demonstrate that the proposed multi-feature fusion approach significantly outperforms traditional single-feature methods, achieving an average improvement of 15% in deduplication accuracy. By overcoming limitations in handling complex visual similarities, this study introduces a more robust and efficient solution for image deduplication.
Keywords
Content-based image retrieval; Convolutional neural networks; Deep learning; Digital asset management; Image deduplication; Multi-feature fusion
DOI:
https://doi.org/10.11591/eei.v14i5.9119
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .