Prediction of postpartum depression in Zacatecas Mexico using a machine learning approach
Lopez-Veyna J. Ivan, Ortiz-Garcia Mariana, Diaz-Diaz Alvaro Moises, Bermejo-Sabbagh Carlos
Abstract
Postpartum depression (PPD) is a silent disorder, difficult to detect by the mother who suffers from it. In this research project, we propose a classification model of PPD using machine learning (ML) techniques, following a supervised learning approach. This is model allows the prediction of PPD using sociodemographic and medical data through a dataset of 100 Zacatecan mothers previously classified with the result of Edinburgh Test. We use eight ML algorithms such as adaptative boosting classified (ABC), principal component analysis (PCA) boosting, decision trees (DT), k-nearest neighbors (KNN), support vector machines (SVM), random forests (RF), and boosting. Our results show that the proposed ML model based on ABC algorithm can outperform other classifiers yielding a precision of 90%, a recall of 90%, a F1-score of 78% and 74% for area under curve (AUC), illustrating a correct capability in the prediction of this disorder.
Keywords
Classification; Machine learning; Postpartum depression; Prediction; Pregnancy
DOI:
https://doi.org/10.11591/eei.v14i5.9492
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .