Real-time vehicle detection and speed estimation system using Raspberry Pi and camera module

B Jyothi, Bhavana Pabbuleti, Gadi Sanjeev, Kambhampati Venkata Govardhan Rao, S. Sai Srilakshmi, Atul Jee, Malligunta Kiran Kumar, Thulasi Bikku, Ch. Rami Reddy

Abstract


In the era of intelligent transportation systems, real-time vehicle detection and distance estimation play a crucial role in enhancing road safety and traffic efficiency. This study proposes a low-cost, real-time system that integrates you only look once–version 8 (YOLOv8)-based deep learning for vehicle detection with monocular vision techniques for distance estimation, implemented on a Raspberry Pi embedded platform. The objective is to provide a scalable, affordable solution for traffic monitoring and collision avoidance in resource-constrained environments. The methodology involves using a camera module connected to Raspberry Pi for live video capture, YOLOv8 for object detection, and a calibrated monocular distance estimation algorithm based on bounding box dimensions and known vehicle sizes. Experimental results show that the system achieves over 90% detection accuracy under standard lighting conditions and maintains a distance estimation error below 10% for vehicles within 15 meters. The model processes video frames in real time (~0.17 seconds per frame), proving its effectiveness for embedded deployment. In conclusion, the proposed system offers a robust, power-efficient alternative to high-cost light detection and ranging (LiDAR) or stereo vision systems. Its modular design supports future enhancements such as speed estimation or multi-camera integration, making it highly relevant for smart city applications and low-cost vehicular safety systems.

Keywords


Camera module; Cruise control; Intelligent transportation; Raspberry Pi; Traffic monitoring

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i6.9931

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).