Real-time vehicle detection and speed estimation system using Raspberry Pi and camera module
B Jyothi, Bhavana Pabbuleti, Gadi Sanjeev, Kambhampati Venkata Govardhan Rao, S. Sai Srilakshmi, Atul Jee, Malligunta Kiran Kumar, Thulasi Bikku, Ch. Rami Reddy
Abstract
In the era of intelligent transportation systems, real-time vehicle detection and distance estimation play a crucial role in enhancing road safety and traffic efficiency. This study proposes a low-cost, real-time system that integrates you only look once–version 8 (YOLOv8)-based deep learning for vehicle detection with monocular vision techniques for distance estimation, implemented on a Raspberry Pi embedded platform. The objective is to provide a scalable, affordable solution for traffic monitoring and collision avoidance in resource-constrained environments. The methodology involves using a camera module connected to Raspberry Pi for live video capture, YOLOv8 for object detection, and a calibrated monocular distance estimation algorithm based on bounding box dimensions and known vehicle sizes. Experimental results show that the system achieves over 90% detection accuracy under standard lighting conditions and maintains a distance estimation error below 10% for vehicles within 15 meters. The model processes video frames in real time (~0.17 seconds per frame), proving its effectiveness for embedded deployment. In conclusion, the proposed system offers a robust, power-efficient alternative to high-cost light detection and ranging (LiDAR) or stereo vision systems. Its modular design supports future enhancements such as speed estimation or multi-camera integration, making it highly relevant for smart city applications and low-cost vehicular safety systems.
Keywords
Camera module; Cruise control; Intelligent transportation; Raspberry Pi; Traffic monitoring
DOI:
https://doi.org/10.11591/eei.v14i6.9931
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .