Performance of K-means algorithm based an ensemble learning
Dhurgham Kadhim Hashim, Lamia Abed Noor Muhammed
Abstract
K-means is an iterative algorithm used with clustering task. It has more characteristics such as simplicity. In the same time, it suffers from some of drawbacks, sensitivity to initial centroid values that may produce bad results, they are based on the initial centroids of clusters that would be selected randomly. More suggestions have been given in order to overcome this problem. Ensemble learning is a method used in clustering; multiple runs are executed that produce different results for the same data set. Then the final results are driven. According to this hypothesis, more ensemble learning techniques have been suggested to deal with the clustering problem. One of these techniques is "Three ways method". However, in this paper, three ways method as an ensemble technique would be suggested to be merged with k-mean algorithm in order to improve its performance and reduce the impact of initial centroids on results. Then it was compared with traditional k-means results through practical work that was executed using popular data set. The evaluation of the hypothesis was done through computing related metrics.
Keywords
Clustering; Ensemble learning; K-means; Three-way method
DOI:
https://doi.org/10.11591/eei.v11i1.3550
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .