Improving frequency regulation for future low inertia power grids: a review

Brian K. Wamukoya, Christopher M. Muriithi, Keren K. Kaberere

Abstract


The modern power system is witnessing an unprecedented increase in the penetration of renewable variable generation (VG) sources. Increased uptake of converter interfaced VG like solar PV and wind power while replacing conventional synchronous generators (SGs) introduces new challenges to grid operators in terms of dynamically handling frequency stability and regulation. Reducing the number of SGs while increasing non-synchronous, inertia-less converter interfaced VG reduces grid natural inertia, which is critical for maintaining frequency stability. To cure inertia deficiency, researchers, broadly, have proposed implementing supplemental control strategies to VG sources or energy storage systems to emulate natural inertia (virtual inertia (VI)). Alternatively, VG sources can be operated below their maximum power point (deloaded mode), making available a reserve margin which can rapidly be deployed in case of a contingency with the help of power electronic devices, to provide fast frequency response. This paper reviews recent solutions proposed in literature to address the low inertia problem to improve frequency stability. Additionally, it highlights the formulation of an optimization problem for VI sizing and placement as well as techniques applied in solving the optimization problem. Finally, gaps in literature that require further research were identified

Keywords


Deloaded mode; Fast frequency response; Low inertia; Synchronous generator; Variable generation; Virtual inertia

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i1.5873

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).