Integration of deep learning algorithms for real-time vehicle accident detection from surveillance videos

Riya Mota, Renuka Wankhade, Gitanjali Rahul Shinde, Rutuja Rajendra Patil, Grishma Bobhate, Gagandeep Kaur

Abstract


Major road accidents have increased due to the rapid rise of vehicles on the roads due to affordability and accessibility. While minor accidents can be resolved without the need for escorting to hospitals, significant accidents that involve the deployment of airbags necessitate the immediate attention of authorities. Thus, subsequent action of first aid and proper communication to concerned medical personnel can avoid most fatalities from accidents. The system involves the automatic detection of traffic accidents from videos extracted by closed-circuit television (CCTV) surveillance. In case of an accident, the system will detect and information about the accident will be instantly relayed to the nearest medical center. We have implemented different machine learning models such as Resnet-18, VGG-16, LeNet, and Inception V1 to ensure the accuracy of accident detection. From comparing all these models, the convolutional neural network (CNN) model shows the highest accuracy of 98%. The quick response will be an important step toward a safer and more secure transportation landscape.

Keywords


Computer vision; Deep neural networks; Long short-term memory; ResNet-18; Traffic safety

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i5.9587

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).