Digital twins and IIoT: comparison of Prometheus and InfluxDB
Bauyrzhan Amirkhanov, Timur Ishmurzin, Murat Kunelbayev, Gulshat Amirkhanova, Azim Aidynuly, Gulnur Tyulepberdinova
Abstract
This article presents a comparative analysis of data monitoring and visualization tools—Prometheus and InfluxDB—in the context of digital twins (DTs) applied to industrial settings. DTs optimize production processes using industrial internet of things (IIoT) technologies. Mathematical models assessed the tools based on response time, resource consumption, throughput, and reliability. Prometheus is better suited for high-frequency monitoring, achieving a response time of 0.01 seconds and processing up to 10,000 metrics per second—10–15% better than InfluxDB. It consumes 1.5 times less memory (100 MB versus 150 MB), making it faster and more resource-efficient. Conversely, InfluxDB excels in long-term storage and analytics, handling up to 8,000 metrics per second with a response time of 0.09 seconds. However, it requires more resources, including higher CPU usage (20% versus 15%). Both tools integrate seamlessly with Grafana for visualization, offering flexibility for real-time monitoring and decision-making. The study provides actionable insights for selecting monitoring systems based on project-specific requirements, highlighting Prometheus’s efficiency in dynamic scenarios and InfluxDB’s strength in analytics-focused tasks.
Keywords
Data monitoring and visualization; Digital twin; InfluxDB; Prometheus; Streaming data
DOI:
https://doi.org/10.11591/eei.v14i5.9687
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .